Immune response Towards Covid-19


The world experienced the outbreaks of coronavirus infection that threaten global pandemic in 2002-2003 by Severe Acute Respiratory Syndrome (SARS) and in 2011 by Middle East Respiratory Syndrome (MERS). In both cases, the causative agents (SARS-CoV and MERS-CoV, respectively) were newly identified coronavirus in the genus Beta coronavirus with zoonotic origin. At the end of 2019, outbreak of another coronavirus that causes respiratory-related illness was reported in Wuhan, Hubei, China, a disease now officially called “ the Corona Virus Disease 2019; COVID-19”. The coronavirus that is the causative agent of this respiratory disease was identified and its genome is fully sequenced.

More than 100 years since the outbreak of the 1918 influenza pandemic, we now seem to face another pandemic. The outbreak of the new coronavirus (SARS-CoV-2) infection is spreading to every continent, forcing us to live with this virus for perhaps a long time. Scientists and clinicians have learned much of coronavirus disease 2019, COVID-19, and its pathogenesis: not all people exposed to SARS-CoV-2 are infected and not all infected patients develop severe respiratory illness. Accordingly, SARS-CoV-2 infection can be roughly divided into three stages: stage I, an asymptomatic incubation period with or without detectable virus; stage II, non-severe symptomatic period with the presence of virus; stage III, severe respiratory symptomatic stage with high viral load. From the point of view of prevention, individuals at stage I, the stealth carriers, are the least manageable because, at least on some occasions, they spread the virus unknowingly: indeed, the first asymptomatic transmission has been reported in Germany. The role of asymptomatic SARS-CoV-2 infected individuals in disseminating the infection remains to be defined.

The cytokine release syndrome (CRS) seems to affect patients with severe conditions. Since lymphocytopenia is often seen in severe COVID-19 patients, the CRS caused by SARS-CoV-2 virus has to be mediated by leukocytes other than T cells, as in patients receiving CAR-T therapy; a high WBC-count is common, suggesting it, in association with lymphocytopenia, as a differential diagnostic criterion for COVID-19. In any case, blocking IL-6 may be effective. Blocking IL-1 and TNF may also benefit patients. Although various clinical sites in China have announced the use of mesenchymal stromal/stem cells (MSCs) in severe cases with COVID-19 infection, solid results have yet to be seen. One caveat is that MSCs need to be activated by IFN γ to exert their anti-inflammatory effects, which may be absent in severely affected patients as T cells are not well activated by SARS-CoV-2 infection. To enhance effectiveness, one could consider employing the “licensing-approach” : pretreat MSCs with IFN γ with/without TNF or IL-1.


Media Contact:

Allison Grey
Journal Manager
Journal of Infectious Diseases and Diagnosis